2024

  1. Barhum, H., Attrash, M., Brice, I., Salgals, T., Matar, M., Amer, M., Abdeen, Z., Alnis, J., Bobrovs, V., Abdeen, A. M., & Ginzburg, P. (2024). SU-8-meta-phenylenediamine-conjugated thin film for temperature sensing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 382(2281). ttps://doi.org/10.1098/rsta.2023.0322
  2. Blahins, J., & Bzhishkian, A. (2024). HIGH RESOLUTION QUADRUPOLE MASS SPECTROMETER FOR ION BEAM PROCESSING. Latvian Journal of Physics and Technical Sciences, 61(1), 5–13. https://doi.org/10.2478/lpts-2024-0001
  3. Bunkas, A. Z., Kalnins, K., Kim, V. v., Reddy, A. N. K., Bundulis, A., Atvars, A., Sarakovskis, A., Ubelis, A., & Ganeev, R. A. (2024). Influence of NaCl on the morphological, spectral, and nonlinear optical characteristics of laser-produced silver and gold nanoparticles. Applied Physics B: Lasers and Optics, 130(1). https://doi.org/10.1007/s00340-023-08159-9
  4. Cinins, A., Efimov, D. K., Bruvelis, M., Miculis, K., Kirova, T., Bezuglov, N. N., Ryabtsev, I. I., Auzinsh, M., & Ekers, A. (2024). Hyperfine interaction in the Autler-Townes effect: Control of two-photon selection rules in the Morris-Shore basis. Physical Review A, 109(6). https://doi.org/10.1103/PhysRevA.109.063116
  5. Ganeev, R. A., & Atvars, A. (2024a). High-Order Harmonics Generation Using Spherical and Non-Spherical Nanoparticles. Nanomaterials, 14(12). https://doi.org/10.3390/nano14121010
  6. Ganeev, R. A., Kim, V. v., Vorobyov, D., Gross, U., Ubelis, A., Ozols, D., Butikova, J., Grube, J., & Sarakovskis, A. (2024a). The First Application of Laser-Induced Breakdown Spectroscopy: A Fast-Analytical Technique in Targeted Search for Elements in Geological Samples from Deep Boreholes in Latvia. Latvian Journal of Physics and Technical Sciences, 61(2), 2332. https://doi.org/10.2478/lpts-2024-0010
  7. Kalnins, K., Kim, V. v., Reddy, A. N. K., Sarakovskis, A., & Ganeev, R. A. (2024a). Spatially Variable Ripple and Groove Formation on Gallium Arsenide Using Linear, Radial, and Azimuthal Polarizations of Laser Beam. Photonics, 11(8). https://doi.org/10.3390/photonics11080710
  8. Reddy, A. N. K., Dev, V., Pal, V., & Ganeev, R. A. (2024a). The Effect of a Parabolic Apodizer on Improving the Imaging of Optical Systems with Coma and Astigmatism Aberrations. Photonics, 11(1). https://doi.org/10.3390/photonics11010014
  9. Wlodarczyk, I., Černis, K., & Eglitis, I. (2024a). Asteroids discovered in the Baldone Observatory between 2017 and 2022: The orbits of asteroid 428694 Saule and 330836 Orius. Open Astronomy, 33(1). https://doi.org/10.1515/astro-2024-0004
  10. Reddy, A. N. K., Kim, V. v, Kärcher, V., Zacharias, H., Bundulis, A., Sarakovskis, A., Atvars, A., Ubelis, A., & Ganeev, R. A. (2024). Spatial shaping of low- and high-order harmonics generated using vortex beams. Journal of Physics D: Applied Physics, 57(30), 305105. https://doi.org/10.1088/1361-6463/ad4371
  11. Sniķeris, J., Apsītis, A., Pumpurs, A., Lācis, U., Kravchenko, S., & Silamiķelis, V. (2024). Experimental observation of the vertical displacement between heating and levitation regions in an electromagnetic levitation coil. Journal of Physics D: Applied Physics, 57(9), 095002. https://doi.org/10.1088/1361-6463/ad0fbb

2023

  1. Barhum, H., Kolchanov, D. S., Attrash, M., Unis, R., Alnis, J., Salgals, T., Yehia, I., & Ginzburg, P. (2023). Thin-film conformal fluorescent SU8-phenylenediamine. Nanoscale, 15(43), 17544–17554. https://doi.org/10.1039/d3nr02744a
  2. Bazouband, F., Hashemi, M., Bazouband, E., Ganeev, R. A., & Reddy, A. N. K. (2023). Robust Design of Autofocused Airy Beam-Based Multifocal Metalens With Tunable Intensities. IEEE Access, 11, 35934–35944. https://doi.org/10.1109/ACCESS.2023.3264010
  3. Blahins, J., Apsitis, A., & Bzhishkian, A. (2023). RECENTLY DEVELOPED INDUSTRIAL DIELECTRIC ENABLES RF CAPACITORS FOR HIGH-KVAR RESONANT TANK USE. Facta Universitatis, Series: Electronics and Energetics, 36(4), 499–507. https://doi.org/10.2298/FUEE2304499B
  4. Boltaev, G. S., Ganeev, R. A., Shuklov, I. A., Lizunova, A. A., Dyomkin, D. v., Milenkovich, T., Abu Baker, A., & Alnaser, A. S. (2023). Studies of the low- and high-order optical nonlinearities of mercury selenide quantum dots using femtosecond pulses. Applied Physics B: Lasers and Optics, 129(6). https://doi.org/10.1007/s00340-023-08041-8
  5. Brice, I., Kim, V. v., Ostrovskis, A., Sedulis, A., Salgals, T., Spolitis, S., Bobrovs, V., Alnis, J., & Ganeev, R. A. (2023). Quantum-Dot-Induced Modification of Surface Functionalization for Active Applications of Whispering Gallery Mode Resonators. Nanomaterials, 13(13). https://doi.org/10.3390/nano13131997
  6. Brice, I., Kim, V. v, Ostrovskis, A., Sedulis, A., Salgals, T., Spolitis, S., Bobrovs, V., Alnis, J., & Ganeev, R. A. (2023). Whispering gallery mode resonator surface functionalization for active applications. Proceedings of SPIE – The International Society for Optical Engineering, 12569. https://doi.org/10.1117/12.2664936
  7. Bundulis, A., Berzina, A., Kim, V. v., Polyakov, B., Novikovs, A., & Ganeev, R. A. (2023). Variation of Nonlinear Refraction and Three-Photon Absorption of Indium–Tin Oxide Quantum Dot Thin Films and Solutions in Near Infrared Range. Nanomaterials, 13(16). https://doi.org/10.3390/nano13162320
  8. Cinins, A., Dimitrijević, M. S., Srećković, V. A., Bruvelis, M., Miculis, K., Bezuglov, N. N., & Ekers, A. (2023). Spectroscopy of adiabatic dark states under two-photon excitation of sodium atoms. Contributions of the Astronomical Observatory Skalnate Pleso, 53(3), 72–83. https://doi.org/10.31577/CAOSP.2023.53.3.72
  9. Cinins, A., Dimitrijević, M. S., Srećković, V. A., Miculis, K., & Bezuglov, N. N. (2023). Analysis of adiabatic processes in multilevel N-pod quantum systems from the perspective of Riemannian geometry. European Physical Journal D, 77(5). https://doi.org/10.1140/epjd/s10053-023-00652-2
  10. Dhiman, V., Gupta, A. C., Kurtanidze, S. O., Eglitis, I., Strigachev, A., Damljanovic, G., Wiita, P. J., Gu, M., Gaur, H., Vince, O., Bachev, R., Bisen, D. P., Ibryamov, S., Ivanidze, R. Z., Jovanovic, M. D., Kurtanidze, O. M., Nikolashvili, M. G., Semkov, E., Spassov, B., … Zhang, Z. (2023). Multiband optical variability of the TeV blazar PG 1553 + 113 in 2019. Monthly Notices of the Royal Astronomical Society, 519(2), 2796–2811. https://doi.org/10.1093/mnras/stac3709
  11. Eglitis, I., & Kristers, N. (2023). Light curve analysis of main belt asteroids 4747, 5255, 11411, 15433, 17866. In Open Astronomy (Vol. 32, Issue 1). Walter de Gruyter GmbH. https://doi.org/10.1515/astro-2022-0227
  12. Fu, Y., Konda, S. R., Ganeev, R. A., Kim, V. v, Boltaev, G. S., Wang, R., Yu, W., & Li, W. (2023). Outstanding nonlinear optical properties of all-inorganic perovskite CsPbX3 (X=Cl, Br, I) precursor solutions and polycrystalline films. IScience, 26(12). https://doi.org/10.1016/j.isci.2023.108514
  13. Ganeev, R. A. (2023). Blue- and red-shifts of the harmonics generated in laser-induced plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 56(14), 145401. https://doi.org/10.1088/1361-6455/acdc6f
  14. Ganeev, R. A. (2023). High-order harmonic generation in laser-induced low-density plasma: past and recent achievements. In Applied Physics B: Lasers and Optics (Vol. 129, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00340-022-07960-2
  15. Ganeev, R. A. (2023). High-order harmonics enhancement in laser-induced plasma. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-41239-6
  16. Ganeev, R. A. (2023). High-Order Harmonics Generation in Selenium-Containing Plasmas. Photonics, 10(7). https://doi.org/10.3390/photonics10070854
  17. Ganeev, R. A. (2023). Quasi-phase-matching of resonance-enhanced high-order harmonics in laser plasmas. Optics Express, 31(26), 43748–43763. https://doi.org/10.1364/OE.502847
  18. Ganeev, R. A. (2023). Three-color pump of laser-induced plasmas: sum and difference frequency generation. Optics Letters, 48(8), 2038–2041. https://doi.org/10.1364/OL.488876
  19. Ganeev, R. A., Kim, V. v, Butikova, J., Atvars, A., Grube, J., Sarakovskis, A., & Ubelis, A. (2023). High-order harmonics generation in Cd and Pd laser-induced plasmas. Optics Express, 31(16), 26626–26642. https://doi.org/10.1364/OE.493754
  20. Gopinath, S., Praveen, P. A., Arockiaraj, F. G., Smith, D., Kahro, T., Valdma, S.-M., Bleahu, A., Ng, S. H., Reddy, A. N. K., Katkus, T., Rajeswary, A. S. J. F., Ganeev, R. A., Pikker, S., Kukli, K., Tamm, A., Juodkazis, S., & Anand, V. (2023). Deep Deconvolution of Object information Transformed by a Lens. Proceedings of SPIE – The International Society for Optical Engineering, 12438. https://doi.org/10.1117/12.2648269
  21. Ignatius Xavier, A. P., Arockiaraj, F. G., Gopinath, S., John Francis Rajeswary, A. S., Reddy, A. N. K., Ganeev, R. A., Singh, M. S. A., Tania, S. D. M., & Anand, V. (2023). Single-Shot 3D Incoherent Imaging Using Deterministic and Random Optical Fields with Lucy–Richardson–Rosen Algorithm. Photonics, 10(9). https://doi.org/10.3390/photonics10090987
  22. Kärcher, V., Kim, V. v, Reddy, A. N. K., Zacharias, H., & Ganeev, R. A. (2023). Generation of Complex Vector and Vortex Extreme Ultraviolet Beams Using the S-Waveplate and Spiral Phase Plate during High-Order Harmonics Generation in Argon. ACS Photonics, 10(12), 4519–4528. https://doi.org/10.1021/acsphotonics.3c01417
  23. Konda, S. R., Ganeev, R. A., Kim, V. v, Ketavath, R., Yu, J., & Li, W. (2023). High-order harmonics generation in nanosecond-pulses-induced plasma containing Ni-doped CsPbBr3 perovskite nanocrystals using chirp-free and chirped femtosecond pulses. Nanotechnology, 34(5). https://doi.org/10.1088/1361-6528/ac9fdb
  24. Konda, S. R., Rajan, R. A., Singh, S., Ganeev, R. A., Soma, V. R., Srivastava, A., Venkatesh, M., Guo, C., & Li, W. (2023). Influence of embedded NiO-nanoparticles on the nonlinear absorption of tungsten disulfide nanolayers. Optical Materials, 138, 113657. https://doi.org/10.1016/j.optmat.2023.113657
  25. Milgrave, L., Alnis, J., Bundulis, A., & Atvars, A. (2023). Integrated SU-8 ring resonator for rapid humidity sensing. Proceedings of SPIE – The International Society for Optical Engineering, 12572. https://doi.org/10.1117/12.2665411
  26. Murnieks, R., Salgals, T., Alnis, J., Ostrovskis, A., Ozolins, O., Brice, I., Sedulis, A., Draguns, K., Lyashuk, I., Berkis, R., Udalcovs, A., Bi, T., Pang, X., Porins, J., Spolitis, S., Del’haye, P., & Bobrovs, V. (2023). Silica micro-rod resonator-based Kerr frequency comb for high-speed short-reach optical interconnects. Optics Express, 31(12), 20306–20320. https://doi.org/10.1364/OE.488436
  27. Salmins, K., Sproģis, V., Biļinskis, I., & del Pino, J. (2023). Local Ties at SLR Station Riga. International Association of Geodesy Symposia, 154, 39–44. https://doi.org/10.1007/1345_2022_157
  28. Sedulis, A., Ostrovskis, A., Zakis, K., Rubuls, K., Ortiz, D., Prigunovs, D., Alnis, J., Bobrovs, V., & Spolitis, S. (2023). Fabrication of Lensed Fibers with Arc Fusion Splicer for Telecommunication Applications. 2023 Photonics and Electromagnetics Research Symposium, PIERS 2023 – Proceedings, 1066–1070. https://doi.org/10.1109/PIERS59004.2023.10221315
  29. Silamikelis, V., Apsitis, A., Snikeris, J., Pumpurs, A., & Biggs, S. (2023). Simultaneous Measurement of the Lifting Force, Joule Heating and Axial/Radial Components of EM Field Inside an Electromagnetic Levitation Coil. Proceedings of the 14th International Conference on Measurement, MEASUREMENT 2023, 230–233. https://doi.org/10.23919/MEASUREMENT59122.2023.10164400
  30. Venkatesh, M., Kim, V. v., Boltaev, G. S., Konda, S. R., Svedlindh, P., Li, W., & Ganeev, R. A. (2023). High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076540
  31. Xavier, A. P. I., Arockiaraj, F. G., Gopinath, S., Rajeswary, A. S. J. F., Reddy, A. N. K., Ganeev, R. A., Singh, M. S. A., Tania, S. D. M., & Anand, V. (2023). Faithful Transfer of 3D Propagation Characteristics of Deterministic and Random Optical Fields to Coded Aperture Imaging Systems Using Lucy-Richardson-Rosen Algorithm. 2023 International Conference on Next Generation Electronics, NEleX 2023. https://doi.org/10.1109/NEleX59773.2023.10421020

2022

  1. Konda, S. R., Soma, V. R., Ganeev, R. A., Banavoth, M., Ketavath, R., & Li, W. (2022). Third-order optical nonlinearities and high-order harmonics generation in ni-doped CsPbBr3 nanocrystals using single- and two-color chirped pulses. Journal of Materials Science, 57, 5, 3468-3485. https://doi.org/10.1007/s10853-022-06871-z  open access  (published online: 20 January 2022) Q1
  2. Kim, V. V., Bundulis, A., Popov, V. S., Lavrentyev, N. A., Lizunova, A. A., Shuklov, I. A., . . . Ganeev, R. A. (2022). Third-order optical nonlinearities of exfoliated Bi2Te3 nanoparticle films in UV, visible and near-infrared ranges measured by tunable femtosecond pulses. Optics Express, 30, 5, 6970-6980. https://doi.org/10.1364/OE.449490 open access  (published online: 16 February 2022) Q1
  3. Nascimento, I. O., Naeem, M., Freitas, R. S., Nascimento, R. M., Viana, B. C., Sousa, R. R. M., . . . Iqbal, J., Costa, T. H. C. (2022). Comparative study of structural and stoichiometric properties of titanium nitride films deposited by cathodic cage plasma deposition and magnetron sputtering. European Physical Journal Plus, 137, 3, Art. No. 319 https://doi.org/10.1140/epjp/s13360-022-02543-8 (published online: 9 March 2022) Q2
  4. Kim, V. V., Shuklov, I. A., Mardini, A. A., Bundulis, A., Zvyagin, A. I., Kholany, R., . . . Ganeev, R. A. (2022). Investigation of nonlinear optical processes in mercury sulfide quantum dots. Nanomaterials, 12, 8, Art. No. 1264.   https://doi.org/10.3390/nano12081264  open access  (published online: 8 April 2022) Q1
  5. Naeem, M., Awan, S., Shafiq, M., Raza, H. A., Iqbal, J., Díaz-Guillén, J. C., . . . Abrar, M. (2022). Wear and corrosion studies of duplex surface-treated AISI-304 steel by a combination of cathodic cage plasma nitriding and PVD-TiN coating. Ceramics International, 48, 21473 – 21482.  https://doi.org/10.1016/j.ceramint.2022.04.115 (published online: 15 April 2022) Q1
  6. Ganeev, R. A., Shuklov, I. A., Zvyagin, A. I., Mardini, A., Lizunova, A. A., Boltaev, G. S., . . . Razumov, V. F. (2022). Optical nonlinearities of mercury telluride quantum dots measured by nanosecond pulses. Photonics and Nanostructures – Fundamentals and Applications, 50, Art. No. 101025.   https://doi.org/10.1016/j.photonics.2022.101025 (published online: 20 April 2022) Q2
  7. Kim, V. V., Bundulis, A., Grube, J., & Ganeev, R. A. (2022). Variation of the sign of nonlinear refraction of carbon disulfide in the short-wavelength region. Optical Materials Express, 12, 5, 2053-2062. https://doi.org/10.1364/OME.451733 open access  (published online: 26 April 2022) Q1
  8. Venkatesh, M., Ganeev, R. A., Kim, V. V., Boltaev, G. S., Sapaev, I. B., Liang, J., . . . Li, W. (2022). Application of vector beams for enhanced high-order harmonics generation in laser-induced plasmas. Optics Express, 30, 10, 17080-17093. https://doi.org/10.1364/OE.454379 open access  (published online: 3 May 2022) Q1
  9. Ganeev, R.A., Kim, V., Boltaev, G., Sapaev, I., Stremoukhov, S. (2022). Joint manifestation of quasi-phase-matching and resonance enhancement of harmonics in laser-induced plasma. Optics Continuum, 5(1), 1098-1116.  https://doi.org/10.1364/OPTCON.454617 [Open Access] (published online: 3 May 2022)
  10. Iqbal, M., Boltaev, G. S., Abbasi, N., Ganeev, R. A., & Alnaser, A. S. (2022). Spatial and spectral variations of high-order harmonics generated in noble gases. Journal of Physics B: Atomic, Molecular and Optical Physics, 55, 10, Art. No. 105601,  https://doi.org/10.1088/1361-6455/ac69c1 (published online: 16 May 2022) Q2
  11. Milgrave, L, Reinis, P. K., Brice, I., Alnis, J., Atvars, A. (2022) Selectivity of glycerol droplet microresonator humidity sensor, Proceedings of SPIE – The International Society for Optical Engineering, 12139, Art. No. 121390F. https://doi.org/10.1117/12.2621124  (published online: 17 May 2022) Q2
  12. Kim, V. V., Ganeev, R. A., Konda, S. R., Boltaev, G. S., Sapaev, I. B., Yu, W., & Li, W. (2022). High-order harmonics generation in the laser-induced lead-free perovskites-containing plasmas. Scientific Reports, 12, 1, Art. No. 9128. https://doi.org/10.1038/s41598-022-13010-w open access [pdf] (published online: 1 June 2022) Q1
  13. de Abreu, L.H.P., Naeem, M., Monção, R.M., Costa, T.H.C., Díaz-Guillén, J.C., Iqbal, J., Sousa, R.R.M. (2022) The Effect of Cathodic Cage Plasma TiN Deposition on Surface Properties of Conventional Plasma Nitrided AISI-M2 Steel. Metals. 12, 6, 961. https://doi.org/10.3390/met12060961 open access  (published online: 2 June 2022) Q1
  14. Smith, D., Gopinath, S., Arockiaraj, F. G., Andra, N. K. R., … Ganeev, R. A., et. al. (2022) Non-linear reconstruction of images from patterns generated by deterministic or random optical masks – concepts and review of research, Journal of Imaging, 8, 6, 174. https://doi.org/10.3390/jimaging8060174 open access  (indexed in SCOPUS) (published online: 20 June 2022) Q2
  15. Ganeev, R. A. (2022). Laser-induced molecular plasma: A medium for high-order harmonics generation of ultrashort pulses. International Journal of Molecular Sciences, 23, 14, 7613. https://doi.org/10.3390/ijms23147613 open access [pdf] (published online: 9 July 2022) Q1
  16. Kim, V. V., Butikova, J., Grube, J., Sarakovskis, A., & Ganeev, R. A. (2022). Plasma dynamics characterization for improvement of resonantly enhanced harmonics generation in indium and tin laser-produced plasmas. Photonics, 9, 9, 600. https://doi.org/10.3390/photonics9090600 open access [pdf] (published online: 24 August 2022) Q2
  17. Praveen, P. A., … Andra, N., … Ganeev, R., …Anand, V. (2022). Deep deconvolution of object information modulated by a refractive lens using lucy-richardson-rosen algorithm. Photonics, 9, 9, 625. https://doi.org/10.3390/photonics9090625 open access [pdf] (published online: 31 August 2022) Q2
  18. Boltaev, G. S., Abu Baker, A. M., Iqbal, M. , Abbasi, N., Ganeev, R., and Alnaser, A. (2022) Low-order nonlinearities and high-order harmonics generation in Zn and ZnSe nanoparticles synthesized during femtosecond laser ablation at 50 kHz pulse repetition rate. J. Opt. Soc. Am. B, 39, 10, 2794 – 2803. https://doi.org/10.1364/JOSAB.469023 (published online: 26 September 2022) Q2
  19. Ganeev, R. A. (2022) Low- and high-order optical nonlinearities of quantum dots. Photonics, 9, 10, 757. https://doi.org/10.3390/photonics9100757 open access [pdf] (published online: 12 October 2022) Q2
  20. Ganeev, R., Kim, V., … and Sarakovskis, A. (2022) Third harmonic generation in the thin films containing quantum dots and exfoliated nanoparticles. Applied Physics B, 128, 202.  https://doi.org/10.1007/s00340-022-07923-7 (published online: 15 October 2022) Q2 
  21. Berkis, R., Reinis, P.K., Milgrave, L., Draguns, K., Salgals, T., Brice, I., Alnis, J., Atvars, A.  (2022) Wavelength Sensing Based on Whispering Gallery Mode Mapping. Fibers, 10, 10, 90.https://doi.org/10.3390/fib10100090 open access [pdf] (published online: 19 October 2022) Q2
  22. Kim, V.V., Grube, J., Butikova, J., Sarakovskis, A., and Ganeev, R. A. (2022) Influence of chromium plasma characteristics on high-order harmonics generation. Applied Physics B. 128, 217. https://doi.org/10.1007/s00340-022-07937-1 (published online: 15 November 2022) Q2
  23. Konda, S. R., Ganeev, R. A., Kim, Jianqi, Y. , and Li, W. (2023) High-order harmonics generation in nanosecond-pulses-induced plasma containing Ni-doped CsPbBr3 perovskite nanocrystals using chirp-free and chirped femtosecond pulses.  Nanotechnology, 34, 055705. https://doi.org/10.1088/1361-6528/ac9fdb (published online: 18 November 2022) Q1
  24. Kim, V.V., Konda, S. R., Yu, W., Li, W., and RGaneev, R. A. (2022) Harmonics generation in the laser-induced plasmas of metal and semiconductor carbide nanoparticles. Nanomaterials, 12, 4228. https://doi.org/10.3390/nano12234228 open access  (published online: 28 November 2022) Q1
  25. Ganeev, R. A. (2023) High-order harmonic generation in laser-induced low-density plasma: past and recent achievements. Applied Physics B, 129, 1, 17. https://doi.org/10.1007/s00340-022-07960-2 (published online: 26 December 2022) Q2

2021

  1. Ganeev, R. A., and Kuroda, H., High-Order Harmonics Generation in Atomic and Molecular Zinc Plasmas, Photonics, 2021, Vol. 8, art. no. 29. https://doi.org/10.3390/photonics8020029, open access  (indexed in Scopus)
  2. Ganeev, R. A. , Kim, V. V. , Rao, K. S. and Guo, C., Probing laser plasma dynamics using high-order harmonics generation in carbon-containing nanomaterials, Applied Sciences, 2021, Vol. 11, art. no. 2143. https://doi.org/10.3390/app11052143, open access  (indexed in Scopus)
  3. Khudaverdyan, S., Vaseashta, A., Ayvazyan, G., Khachatryan, M., Atvars, A., Lapkis, M., & Rudenko, S. On the semiconductor spectroscopy for identification of emergent contaminants in transparent mediums, in Advanced Sciences and Technologies for Security Applications, 2021, pp. 663 – 689  https://doi.org/10.1007/978-3-030-76008-3_29
  4. Reinis, P. K., Milgrave, L., Draguns, K., Brice, I., Alnis, J., Atvars, A., High sensitivity whispering gallery mode humidity sensor based on a glycerol microdroplet volumetric expansion, Sensors, 2021, Vo. 21, art. no. 1746. https://doi.org/10.3390/s21051746, open access  (indexed in Scopus)
  5. Ganeev, R., Kuroda, H., Reexamining different factors of the resonance-enhanced high-order harmonic generation in atomic and nanoparticle laser-induced tin plasmas, Applied Sciences, 2021, Vol. 11, art no. 2193. https://doi.org/10.3390/app11052193, open access  (indexed in Scopus)
  6. Ganeev, R., Kuroda, H., Resonance-affected high-order harmonic emission from atomic and molecular chromium laser-induced plasmas, OSA Continuum, Vol. 4, Issue 5, 2021, pp. 1545 – 1554. https://doi.org/10.1364/OSAC.422269, open access  (indexed in Scopus)
  7. Anashkina, E.A., Bobrovs, V., Salgals, T., Brice, I., Alnis, J., Andrianov, A.V. Kerr optical frequency combs with multi-FSR mode spacing in silica microspheres (2021) IEEE Photonics Technology Letters, 33 (9), art. no. 9385100, pp. 453-456. https://doi.org/0.1109/LPT.2021.3068373 (indexed in Scopus)
  8. Ganeev, R. A., Shuklov, I. A., Zvyagin, A. I., Dyomkin, D. V., S. Smirnov, M.s., Ovchinnikov, O. V., Lizunova, A. A., Perepukhov, A. M., Popov, V.S. and Razumov, V. F., Synthesis and low-order optical nonlinearities of colloidal HgSe quantum dots in the visible and near infrared ranges (2021)  Optics Express, Vol. 29, Issue 11, pp. 16710 – 16726.  https://doi.org/10.1364/OE.425549, open access  (indexed in Scopus)
  9. Ganeev, R. A., Zvyagin, A. I., Shuklov, I. A., Spirin, M. G., Ovchinnikov, O. V., & Razumov, V. F. (2021). Nonlinear optical characterization of InP@ZnS core‐shell colloidal quantum dots using 532 nm, 10 ns pulses. Nanomaterials, 11(6), 1366. https://doi.org/10.3390/nano11061366, open access  (indexed in SCOPUS)
  10. Draguns, K., Brice, I., Atvars, A., Alnis, J., Computer modelling of WGM microresonators with a zinc oxide nanolayer using COMSOL multiphysics software, SPIE Proceedings,  Vol. 11672, Laser Resonators, Microresonators, and Beam Control XXIII, 2021, art. no. 1167216.https://doi.org/10.1117/12.2578210 (to be indexed in SCOPUS)
  11. Bzhishkian, A., Ubelis, A.,  Advanced Hardware and Software for the Upgrade of Mirror/Prisma Monochromator SPM-2 (Carl Zeiss Jena) for the Measurements of Basic Spectroscopic Properties of Atoms in Near VUV, Far UV, UV Spectral Region, 13th International Conference on Measurement, 2021, pp. 61-62. https://doi.org/10.23919/Measurement52780.2021.9446770  (to be indexed in SCOPUS)
  12. Berzinhs, U., Combination of 3 Different Measurements: Branching Fractions, Radiative Lifetimes, and Absorption Oscillator Strengths- a Good Opportunity for the Analysis of the Presence of Elements in Astrophysical Objects, 13th International Conference on Measurement, 2021, pp. 211-214. https://doi.org/10.23919/Measurement52780.2021.9446781 (to be indexed in SCOPUS)
  13. Kim, V. V., Yalishev, V. S., Khan, S. A., Iqbal, M., Boltaev, G. S., Ganeev, R. A., & Alnaser, A. S. Influence of gas environment on the dynamics of wetting transition of laser-textured stainless steel meshes. AIP Advances, 11(7), 2021, art. no. 075221. https://doi.org/10.1063/5.0047514 , open access  (indexed in SCOPUS)
  14. Konda, S. R., Maurya, S. K., Ganeev, R. A., Lai, Y. H., Guo, C., & Li, W. Third-order nonlinear optical effects of silver nanoparticles and third harmonic generation from their plasma plumes. Optik, Vol. 245, Nov 2021, art. no. 167680.  https://doi.org/10.1016/j.ijleo.2021.167680 (indexed in SCOPUS)
  15. Viktorov, E. A., Dimitrijević, M. S., Srećković, V. A., Bezuglov, N. N., Miculis, K., Pastor, A., & Serdobintsev, P. Y. Collapse of xe polarized atomic states in magnetic fields. European Physical Journal D, 2021, 75(1) https://doi.org/10.1140/epjd/s10053-020-00029-9
  16. Viktorov, E. A., Miculis, K., Pastor, A. A., Serdobintsev, P. Y., & Bezuglov, N. N. Oscillations of photocurrent signals upon photoionization of polarized ar and xe atoms in magnetic fields. Paper presented at the Proceedings of SPIE – the International Society for Optical Engineering, 2021 , 11770 https://doi.org/10.1117/12.2591762
  17. Zalam, A. A., Bruvelis, M., Miculis, K., Beterov, I. I., Bezuglov, N. N., Ekers, A., & Fuso, F. Strong enhancement of penning ionisation in cold rydberg gases II: Tom and jerry pairs for alkali-metal atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54(6) https://doi.org/10.1088/1361-6455/abd9fe
  18. Eglitis, I., & Andruk, V. Astrometry and photometry of digitized plates of baldone schmidt telescope. Open Astronomy, 2020, 30(1), 12-23. https://doi.org/10.1515/astro-2021-0002

2020

  1. Puentes, G., High-dimensional angular two-photon interference and angular qudit states, OSA Continuum, Vol. 3, No. 6, 2020, p. 1616–1632. https://doi.org/10.1364/OSAC.392178, open access  (indexed in Web of Science)
  2. Brice, I., Viter, R., Draguns, K., Grundsteins, K., Atvars, A., Alnis, J., . . . Iatsunskyi, I. Whispering gallery mode resonators covered by a ZnO nanolayer. Optik, 2020, 219 https://doi.org/10.1016/j.ijleo.2020.165296
  3. Braunfelds, J., Murnieks, R., Salgals, T., Brice, I., Sharashidze, T., Lyashuk, I., . . . Bobrovs, V. Frequency comb generation in WGM microsphere based generators for telecommunication applications. Quantum Electronics, 2020, 50(11), 1043.  https://doi.org/10.1070/QEL17409
  4. Brice, I., Grundsteins, K., Atvars, A., Alnis, J., Viter, R., & Ramanavicius, A. Whispering gallery mode resonator and glucose oxidase based glucose biosensor. Sensors and Actuators, B: Chemical, 2020, 318 https://doi.org/10.1016/j.snb.2020.128004
  5. Blahins, J., Leopold, T., Apsitis, A., Berzins, U., Ubelis, A., Rohlén, J., . . . Hanstorp, D. (2020). Operating a cesium sputter source in a pulsed mode. Review of Scientific Instruments, 2020, 91(2) https://doi.org/10.1063/1.5130519
  6. Dimitrijević, M. S., Srećković, V. A., Zalam, A. A., Miculis, K., Efimov, D. K., Bezuglov, N. N., & Klyucharev, A. N. Autoionization widths of cold rydberg atomic complexes. Contributions of the Astronomical Observatory Skalnate Pleso, 2020, 50(1), 66-85. https://doi.org/10.31577/caosp.2020.50.1.66
  7. Zalam, A. A., Dimitrijević, M. S., Srećković, V. A., Bezuglov, N. N., Miculis, K., Klyucharev, A. N., & Ekers, A. Penningionization processes involving cold rydberg alkali metal atoms. European Physical Journal D, 2020, 74(12) https://doi.org/10.1140/epjd/e2020-10507-7
  8. Skirmante, K., Eglitis, I., Jekabsons, N., Bezrukovs, V., Bleiders, M., Nechaeva, M., & Jasmonts, G. Observations of astronomical objects using radio (irbene RT-32 telescope) and optical (baldone schmidt) methods. Astronomical and Astrophysical Transactions, 2020, 32(1), 13-22.
  9. Sukharev, A., Ryabov, M., Bezrukovs, V., Orbidans, A., Bleiders, M., Udovichenko, S., . . . Dubovsky, P. Program and results of investigations rapid variability of the BL lac object 3C 371 in radio and optical ranges. Galaxies, 2020, 8(3) https://doi.org/10.3390/GALAXIES8030069
  10. Wlodarczyk, I., Černis, K., & Eglitis, I. Observational data and orbits of the asteroids discovered at the Baldone observatory in 2015-2018. Open Astronomy, 2020, 29(1), 179-188. https://doi.org/10.1515/astro-2020-0017